国家公务员考试网已于10月13日全部公布2013年国家公务员考试公告,职位表,大纲等,详情请查看:2013年国家公务员考试资讯专题。
国家公务员考试网提醒:2013年国家公务员考试报名时间为2012年10月15日至24日,报名截止时间不再是往常的最后一天24时,而是10月24日18时。由于资格审查时间最长可达48小时,而报名截止时间之后,已经报名的考生,虽然还可以继续通过审核,但是没有通过的考生则不能改报其他岗位,所以提醒考生们最好在22日18时以前报考。报名成功的考生,请抓紧时间复习,进入全面备考状态。
几何问题是近年来国考数量关系的常考重点题型,且近几年国考中的几何问题的出题方向也不再局限于传统知识点的考查,更多的是考查考生的思维方式以及解决新题型的能力。因此,国家公务员考试通用教材编写小组提醒广大考生在备考过程中应对该问题引起足够的重视,做足充分准备,熟悉常考题型及常见解题思路,并且灵活运用常用方法解决新题型。当遇到使用常规思路和解题方法无法解决的问题时,考虑在时间充裕的情况下发散思维,多种角度思考该问题,找到快速的解题方法。下面国家公务员考试通用教材编写小组就带领大家从题型和方法入手,回顾历年真题,并且给大家一些解决几何问题行之有效的方法。
一、几何问题在国考中的常考题型
几何问题是行测考试中经常考查的部分,尽管大家在中小学都学过几何,但是行测考试中的几何问题与中学的几何问题相比,有自己的特点,重点是考查在复杂的问题中,如何迅速地得到答案。国家公务员考试通用教材编写小组提示各位考生必须在掌握基础理论的同时,熟悉常考题型及其解法和技巧。
1.基本公式类。一般运用基本的几何公式求解几何图形的边长、周长、面积、表面积、体积的几何变量。常考公式包括:圆形(圆弧,半圆,扇形)的周长公式,正方形、长方形、三角形、圆形(扇形)的面积公式,正方体、长方体的表面积公式以及正方体、长方体、球体、四面体和棱锥的体积公式。考生们需要牢记并且熟练运用以上公式,快速解决考查基本公式类的题目。
2.割补平移类。顾名思义:割、补、平移。即我们在处理不规则的几何图形时通常采用“割补平移”的方法,将不规则图形转化为规则图形进行求解。
3.几何特性类。几何特性类的题目通常考查三角形三边关系、几何最值问题、等比放缩类题目。这类题目难度不高,我们只需要记住一些固定的题型和基本结论即可轻松解决。
4.新题型。近两年国考的数量关系都喜欢在几何问题上做文章,变换出题方式,着重考查考生的思维能力和解决非常规题型的能力。因此,在今年的国考备考中,我们要做好充分的准备,在时间充裕的情况下,尽量解决此类新题型。
二、真题回顾
【例1】(2012-国家-80)连接正方体每个面的中心构成一个正八面体(如下图所示)。己知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?( )
A.18 B.24
C.36 D.72
分析:本题为立体几何问题,所求为一正八面体体积,属于基本公式类题目。但是我们没有直接求解正八面体的体积公式,因此考虑将该正八面体沿中心平面分割为两个正四棱锥。如图下所示,每个四棱锥的底面为原正方体四个侧面的中心的连线,因此底面面积为正方体一个面面积的一半;高分别为上下两个底面中心到底面的距离。由棱锥体积公式有:
正八面体的体积=2。
小结:基本公式类的题目总体上较为简单,我们只要依照题目所给条件及所求变量,再结合一些基本公式进行计算即可,在计算过程中认真仔细,避免运算上的错误。
【例2】(2009-湖北-100)在下图中,大圆的半径为8,阴影部分的面积为( )?
A.120 B.128
C.136 D.144
分析:观察上图我们发现:所求阴影部分为不规则图形,因此我们考虑采用“割补平移”的方法,将不规则图形转化为规则图形进行求解。如下图所示,连接四个小圆与大圆的切点及小圆之间的交点。我们按图中方式将阴影部分补成一个正方形,正方形的对角线即为大圆的直径,为8×2=16,所以其面积:。
小结:近几年的国考中虽然没有考查“割补平移”方法的运用,但是对不规则图形的求解作为一类重要的几何题型,其解题方法我们还是应该熟练掌握的,我们在运用“割补平移”的方法进行求解时要记住以下两个原则:
1.将一个整体图形分割为多个部分,利用整体与部分之间的关系来求解。
2.当两个规则图形存在“包含”关系的时候,“大规则图形”挖去“小规则图形”所剩下的形状往往是不规则的,其面积必然是两个规则图形的差。
【例3】(2008-国家-49)相同表面积的四面体、六面体、正十二面体及正二十面体,其中体积最大的是( )。
A.四面体B.六面体
C.正十二面体D.正二十面体
分析:本题属于几何特性类题目。我们知道:面积一定的图形,越接近于圆,则周长越小;周长一定的图形,越接近圆,面积越大。体积一定的图形,越接近于球,则表面积越小;表面积一定的图形,越接近球,则体积越大。本题四个选项中,正二十面体最接近球,因此体积最大。因此,本题选择D选项。
注释:本题要注意A、B两个选项,四面体和六面体,由于其非“正”,故它们之间体积大小无法比较。
【例4】(2010-国家-52)科考队员在冰面上钻孔获取样本,测量不同孔心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?
A.4B.5
C.6D.7
分析:读完题目后可能很多考生不明白本题考查什么,如何下手,但是仔细分析后发现本题实质为:三角形三边关系的拓展。要想钻孔尽可能少,那么测量的6个距离的线段必须尽可能的构成的闭合回路,即必须使其他几条边的长度之和大于最长的边,而题目数据“1米、3米、6米、12米、24米、48米”中,任意一个长度都大于比它小的所有长度之和,故而这些线段不能构成闭合回路。因此,6个距离至少需要7个钻孔。
小结:国考中对于几何特性类型题目的考查较少,且一般情况下难度较低,因此,考生只需熟练掌握之前提到的三点:1.三角形三边关系;2.几何最值;3.等比放缩。就可以很好的解决此类题目。
三、总结
通过以上六道四类国考中几何问题的真题分析,国家公务员考试通用教材编写小组人员发现在国考中,几何问题所占的比重还是很大的,且考查难度也是略有提升的,且题目类型也将会以新题型为主。但是我们解决新题型的能力亦是建立在对基本公式、基本方法的熟练掌握、运用的基础之上的,因此,国家公务员考试通用教材编写小组提醒广大考生需要熟练掌握基础题型的固定解法,并且提高思维能力和分析解决新问题的能力,从而做到游刃有余的解决国考中的几何问题。
更多详情请查询:国家公务员考试网(http://ww.chinagwyw.org/)