湖南公务员数学运算习题精解(43)

2013-08-02 国家公务员考试网

  【例题】在前面3场击球游戏中,某人的得分分别为130、143、144。为使4场游戏得分的平均数为145,第四场他应得多少分?( )


  【例题】某单位围墙外面的公路围成了边长为300米的正方形,甲乙两人分别从两个对角沿逆时针同时出发,如果甲每分钟走90米,乙每分钟走70米,那么经过( )甲才能看到乙
  A.16分40秒   B.16分   C.15分   D.14分40秒


  【例题】一种商品,甲店进货价比乙店便宜12%,两店同样按20%的利润定价,这样1件商品乙店比甲店多收入24元,甲店的定价是多少元?( )
  A.1000   B.1024   C.1056   D.1200


  【例题】某单位有60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?
  A.12   B.14     C.15    D.19

 

 

 

 

 

 

 

 

 

 

 

 

 

  湖南公务员网(http://www.hunangwy.org)解析

 


  【解析】C。4场游戏得分平均数为145,则总分为145×4=580,故第四场应的580-130-143-144=163分。

  
  【解析】A。这道题是一道较难的行程问题,其难点在于“甲看到乙”这个条件。有一种错误的理解就是“甲看到乙”则是甲与乙在同一边上的时候甲就能看到乙,也就是甲、乙之间的距离小于300米时候甲就能看到乙了,其实不然。考虑一种特殊情况,就是甲、乙都来到了这个正方形的某个角旁边,但是不在同一条边上,这个时候虽然甲、乙之间距离很短,但是这时候甲还是不能看到乙。由此看出这道题的难度——甲看到乙的时候两人之间的距离是无法确定的。
  有两种方法来“避开”这个难点——

  解法一:借助一张图来求解
  虽然甲、乙两人沿正方形路线行走,但是行进过程完全可以等效的视为两人沿着直线行走,甲、乙的初始状态如图所示。


  图中的每一个“格档”长为300米,如此可以将题目化为这样的问题“经过多长时间,甲、乙能走入同一格档?”
  观察题目选项,发现有15分钟、16分钟两个整数时间,比较方便计算。因此代入15分钟值试探一下经过15分钟甲、乙的位置关系。经过15分钟之后,甲、乙分别前进了
  90×15=1350米=(4×300+150)米
  70×15=1050米=(3×300+150)米
  也就是说,甲向前行进了4个半格档,乙向前行进了3个半格档,此时两人所在的地点如图所示。


  甲、乙两人恰好分别在两个相邻的格档的中点处。这时甲、乙两人相距300米,但是很明显甲还看不到乙,正如解析开始处所说,如果单纯的认为甲、乙距离差为300米时,甲就能看到乙的话就会出错。
  考虑由于甲行走的比乙快,因此当甲再行走150米,来到拐弯处的时候,乙行走的路程还不到150米。此时甲只要拐过弯就能看到乙。因此再过150/90=1分40秒之后,甲恰好拐过弯看到乙。所以甲从出发到看到乙,总共需要16分40秒,甲就能看到乙。
  这种解法不是常规解法,数学基础较为薄弱的考生可能很难想到。

  解法二:考虑实际情况
  由于甲追乙,而且甲的速度比乙快,因此实际情况下,甲能够看到乙恰好是当甲经过了正方形的一个顶点之后就能看到乙了。也就是说甲从一个顶点出发,在到某个顶点时,甲就能看到乙了。
  题目要求的是甲运动的时间,根据上面的分析可知,经过这段时间之后,甲正好走了整数个正方形的边长,转化成数学运算式就是
  90×t=300×n
  其中,t是甲运动的时间,n是一个整数。带入题目四个选项,经过检验可知,只有A选项16分40秒过后,甲运动的距离为
  90×(16×60+40)/60=1500=300×5
  符合“甲正好走了整数个正方形的边长”这个要求,它是正确答案。


  【解析】C。设乙店进货价为x元,可列方程20%x-20%×(1-12%)x=24,解得x=1000,故甲店定价为1000×(1-12%)×(1+20%)=1056元。


  【解析】C。有34人穿黑裤子,则有60-34=26个人穿蓝色裤子,26-12=14个人穿黑衣蓝裤,则有29-14=15个人穿黑衣黑裤。

分享到

切换频道